Realizing degree sequences with k-edge-connected uniform hypergraphs
نویسندگان
چکیده
An integral sequence d = (d1, d2, . . . , dn) is hypergraphic if there is a simple hypergraph H with degree sequence d, and such a hypergraph H is a realization of d. A sequence d is r-uniform hypergraphic if there is a simple r-uniform hypergraph with degree sequence d. Similarly, a sequence d is r-uniformmulti-hypergraphic if there is an r-uniformhypergraph (possibly with multiple edges) with degree sequence d. In this paper, it is proved that an r-uniform hypergraphic sequence d = (d1, d2, . . . , dn) has a k-edge-connected realization if and only if both di ≥ k for i = 1, 2, . . . , n and n i=1 di ≥ r(n−1) r−1 , which generalizes the formal result of Edmonds for graphs and that of Boonyasombat for hypergraphs. It is also proved that a nonincreasing integral sequence d = (d1, d2, . . . , dn) is the degree sequence of a k-edge-connected r-uniform hypergraph (possibly with multiple edges) if and only if n i=1 di is a multiple of r , dn ≥ k and n i=1 di ≥ max{ r(n−1) r−1 , rd1}. © 2013 Elsevier B.V. All rights reserved.
منابع مشابه
New Results on Degree Sequences of Uniform Hypergraphs
A sequence of nonnegative integers is k-graphic if it is the degree sequence of a kuniform hypergraph. The only known characterization of k-graphic sequences is due to Dewdney in 1975. As this characterization does not yield an efficient algorithm, it is a fundamental open question to determine a more practical characterization. While several necessary conditions appear in the literature, there...
متن کاملCovering complete partite hypergraphs by monochromatic components
A well-known special case of a conjecture attributed to Ryser (actually appeared in the thesis of Henderson [7]) states that k-partite intersecting hypergraphs have transversals of at most k−1 vertices. An equivalent form of the conjecture in terms of coloring of complete graphs is formulated in [1]: if the edges of a complete graph K are colored with k colors then the vertex set of K can be co...
متن کاملTransversals and Independence in Linear Hypergraphs with Maximum Degree Two
For k > 2, let H be a k-uniform hypergraph on n vertices and m edges. Let S be a set of vertices in a hypergraph H. The set S is a transversal if S intersects every edge of H, while the set S is strongly independent if no two vertices in S belong to a common edge. The transversal number, τ(H), of H is the minimum cardinality of a transversal in H, and the strong independence number of H, α(H), ...
متن کاملNonconvexity of the Set of Hypergraph Degree Sequences
It is well known that the set of possible degree sequences for a simple graph on n vertices is the intersection of a lattice and a convex polytope. We show that the set of possible degree sequences for a simple k-uniform hypergraph on n vertices is not the intersection of a lattice and a convex polytope for k > 3 and n > k + 13. We also show an analogous nonconvexity result for the set of degre...
متن کاملHamilton cycles in quasirandom hypergraphs
We show that, for a natural notion of quasirandomness in k-uniform hypergraphs, any quasirandom k-uniform hypergraph on n vertices with constant edge density and minimum vertex degree Ω(nk−1) contains a loose Hamilton cycle. We also give a construction to show that a k-uniform hypergraph satisfying these conditions need not contain a Hamilton `-cycle if k − ` divides k. The remaining values of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Mathematics
دوره 313 شماره
صفحات -
تاریخ انتشار 2013